Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
J Physiol ; 600(19): 4325-4345, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030507

RESUMO

The tachykinin peptides include substance P (SP), neurokinin A and neurokinin B, which interact with three G-protein-coupled neurokinin receptors, NK1Rs, NK2Rs and NK3Rs, respectively. Whereas high densities of NK3Rs have been detected in the basolateral amygdala (BLA), the functions of NK3Rs in this brain region have not been determined. We found that activation of NK3Rs by application of the selective agonist, senktide, persistently excited BLA principal neurons. NK3R-elicited excitation of BLA neurons was mediated by activation of a non-selective cation channel and depression of the inwardly rectifying K+ (Kir) channels. With selective channel blockers and knockout mice, we further showed that NK3R activation excited BLA neurons by depressing the G protein-activated inwardly rectifying K+ (GIRK) channels and activating TRPC4 and TRPC5 channels. The effects of NK3Rs required the functions of phospholipase Cß (PLCß), but were independent of intracellular Ca2+ release and protein kinase C. PLCß-mediated depletion of phosphatidylinositol 4,5-bisphosphate was involved in NK3R-induced excitation of BLA neurons. Microinjection of senktide into the BLA of rats augmented fear-potentiated startle (FPS) and this effect was blocked by prior injection of the selective NK3R antagonist SB 218795, suggesting that activation of NK3Rs in the BLA increased FPS. We further showed that TRPC4/5 and GIRK channels were involved in NK3R-elicited facilitation of FPS. Our results provide a cellular and molecular mechanism whereby NK3R activation excites BLA neurons and enhances FPS. KEY POINTS: Activation of NK3 receptors (NK3Rs) facilitates the excitability of principal neurons in rat basolateral amygdala (BLA). NK3R-induced excitation is mediated by inhibition of GIRK channels and activation of TRPC4/5 channels. Phospholipase Cß and depletion of phosphatidylinositol 4,5-bisphosphate are necessary for NK3R-mediated excitation of BLA principal neurons. Activation of NK3Rs in the BLA facilitates fear-potentiated startle response. GIRK channels and TRPC4/5 channels are involved in NK3R-mediated augmentation of fear-potentiated startle.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Receptores da Neurocinina-3 , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo , Camundongos , Neurocinina A/metabolismo , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Fosfatidilinositóis , Fosfolipases/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores da Neurocinina-3/metabolismo , Reflexo de Sobressalto , Substância P/metabolismo , Substância P/farmacologia , Canais de Cátion TRPC/metabolismo
2.
Reprod Biol Endocrinol ; 20(1): 91, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729637

RESUMO

BACKGROUND: Kisspeptin released from Kiss-1 neurons in the hypothalamus plays an essential role in the control of the hypothalamic-pituitary-gonadal axis by regulating the release of gonadotropin-releasing hormone (GnRH). In this study, we examined how androgen supplementation affects the characteristics of Kiss-1 neurons. METHODS: We used a Kiss-1-expressing mHypoA-55 cell model that originated from the arcuate nucleus (ARC) of the mouse hypothalamus. These cells are KNDy neurons that co-express neurokinin B (NKB) and dynorphin A (DynA). We stimulated these cells with androgens and examined them. We also examined the ARC region of the hypothalamus in ovary-intact female rats after supplementation with androgens. RESULTS: Stimulation of mHypoA-55 cells with 100 nM testosterone significantly increased Kiss-1 gene expression by 3.20 ± 0.44-fold; testosterone also increased kisspeptin protein expression. The expression of Tac3, the gene encoding NKB, was also increased by 2.69 ± 0.64-fold following stimulation of mHypoA-55 cells with 100 nM testosterone. DynA gene expression in these cells was unchanged by testosterone stimulation, but it was significantly reduced at the protein level. Dihydrotestosterone (DHT) had a similar effect to testosterone in mHypoA-55 cells; kisspeptin and NKB protein expression was significantly increased by DHT, whereas it significantly reduced DynA expression. In ovary-intact female rats, DTH administration significantly increased the gene expression of Kiss-1 and Tac3, but not DynA, in the arcuate nucleus. Exogenous NKB and DynA stimulation failed to modulate Kiss-1 gene expression in mHypoA-55 cells. Unlike androgen stimulation, prolactin stimulation did not modulate kisspeptin, NKB, or DynA protein expression in these cells. CONCLUSIONS: Our observations imply that hyperandrogenemia affects KNDy neurons and changes their neuronal characteristics by increasing kisspeptin and NKB levels and decreasing DynA levels. These changes might cause dysfunction of the hypothalamic-pituitary-gonadal axis.


Assuntos
Dinorfinas , Hiperandrogenismo , Androgênios/metabolismo , Animais , Dinorfinas/genética , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hiperandrogenismo/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Neurocinina B/genética , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Neurônios/metabolismo , Ratos , Taquicininas , Testosterona/metabolismo , Testosterona/farmacologia
3.
J Investig Med ; 68(6): 1171-1178, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32699178

RESUMO

The precise mechanisms that lead to parturition remain unclear. In our initial complementary DNA (cDNA) microarray experiment, we found that the neuromedin B receptor (NMBR) was differentially expressed in the human myometrium during spontaneous or oxytocin-induced labor. We have previously shown that neuromedin B (NMB) could induce interleukin 6 (IL-6) and type 2 cyclo-oxygenase enzyme (COX-2) expression in the primary human myometrial cells via nuclear factor kappa B (NF-κB) transcription factor p65 (p65) and Jun proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (c-Jun). This study is aimed to investigate whether NMBR is required for NMB-induced effect. Primary myometrial cell culture was established to provide a suitable model to investigate the mechanism of NMB in labor initiation. Immunochemical staining was conducted to validate the NMBR expression in primary myometrial cells. The mRNA and protein expression of NMBR, p65, c-Jun, COX-2 and IL-6 were assessed by Quantitative Real Time PCR (RT-qPCR) and western blotting. Lentiviruses with shRNAs targeting NMBR or containing cDNA sequence of NMBR were transfected to primary myometrial cells to knockdown or overexpress NMBR. Cell death was determined by annexin V and propidium iodide staining and analyzed by flow cytometry. The upregulation of COX-2 and IL-6 and phosphorylation of p65 and c-Jun were significantly attenuated by knockdown of NMBR and enhanced by overexpressed NMBR following NMB treatment, with no significant change in total p65 and c-Jun. In summary, this study showed that NMBR-mediated NMB-induced NF-κB and AP-1 activation, which in turn, induce expression of IL-6 and COX-2 in primary myometrial cells.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Interleucina-6/metabolismo , Miométrio/metabolismo , Neurocinina B/análogos & derivados , Receptores da Bombesina/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Interleucina-6/genética , Miométrio/citologia , Neurocinina B/farmacologia , Trabalho de Parto Prematuro/metabolismo , Trabalho de Parto Prematuro/prevenção & controle , Gravidez , Proto-Oncogene Mas , RNA/análise , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Bombesina/uso terapêutico , Regulação para Cima
4.
Gen Comp Endocrinol ; 288: 113371, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857076

RESUMO

Mammalian bombesin-related peptide, neuromedin B (NMB) action is mediated by its receptor (NMBR), and NMB/NMBR system plays a major role in regulating hormone secretions, reproduction and cell growth. Here we report the functions of NMB in regulating steroidogenesis (testosterone synthesis), cell viability and apoptosis. The primary rabbit Leydig cells were employed as the paradigm for this research. We initially confirmed that NMBR is distributed in Leydig cells of rabbit testis, and a certain dose of NMB could increase the secretion of testosterone in primary cultured rabbit Leydig cells. Subsequently, the accumulated NMBR, StAR, CYP11A1, 3ß-HSD and PKC protein could be induced by a certain dose of NMB in Leydig cells. Moreover, we found that NMB could decrease the cell viability, and decreased the expression of PCNA protein in Leydig cells; meanwhile, except for 100 nM, other doses of NMB could suppress the cell apoptosis, and regulate Caspase-3 protein expression in Leydig cells, respectively. These results identify that NMB may be a key factor in regulating testosterone synthesis through taking part in NMBR/PKC/steroidogenesis signaling pathway, as well as the cell viability and proliferation in rabbit Leydig cells.


Assuntos
Apoptose/efeitos dos fármacos , Hormônios Esteroides Gonadais/biossíntese , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/fisiologia , Neurocinina B/análogos & derivados , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Lipogênese/efeitos dos fármacos , Lipogênese/fisiologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Neurocinina B/farmacologia , Coelhos , Receptores da Bombesina/metabolismo , Testosterona/biossíntese , Testosterona/metabolismo
5.
Vet Res ; 50(1): 80, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601264

RESUMO

The peptide neuromedin B (NMB) and its receptor (NMBR) represent a system (NMB/NMBR) of neuromodulation. Here, it was demonstrated that the expression of NMBR in cells or murine lung tissues was clearly upregulated in response to H1N1/PR8 influenza A virus infection. Furthermore, the in vitro and in vivo activities of NMB/NMBR during PR8 infection were investigated. It was observed that A549 cells lacking endogenous NMBR were more susceptible to virus infection than control cells, as evidenced by the increased virus production in the cells. Interestingly, a significant decrease in IFN-α and increased IL-6 expression were observed in these cells. The role of this system in innate immunity against PR8 infection was probed by treating mice with NMB. The NMB-treated mice were less susceptible to virus challenge, as evidenced by increased survival, increased body weight, and decreased viral NP expression compared with the control animals. Additionally, the results showed that exogenous NMB not only enhanced IFN-α expression but also appeared to inhibit the expression of NP and IL-6 in PR8-infected cells and animals. As expected, opposing effects were observed in the NMBR antagonist-treated cells and mice, which further confirmed the effects of NMB. Together, these data suggest that NMB/NMBR may be an important component of the host defence against influenza A virus infection. Thus, these proteins may serve as promising candidates for the development of novel antiviral drugs.


Assuntos
Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/fisiologia , Neurocinina B/análogos & derivados , Receptores da Bombesina/imunologia , Células A549 , Animais , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Neurocinina B/farmacologia , Infecções por Orthomyxoviridae , Organismos Livres de Patógenos Específicos
6.
Biosci Rep ; 39(10)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31527064

RESUMO

Neuromedin B (NMB) and its receptor regulate labor onset by mediating inflammatory factors; however the underlying mechanisms remain poorly understood. The present study is aimed to investigate the mechanisms of NMB-induced cyclo-oxygenase 2 (COX-2) expression and interleukin (IL)-6 generation in human primary myometrial cells. The results indicated that NMB could increase phosphorylation of nuclear factor κB (NF-κB) transcription factor p65 (p65) and Jun proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (c-Jun), and in turn, markedly up-regulated the expression levels of COX-2 and IL-6. This up-regulation was significantly attenuated by knockdown of p65 or c-Jun, and enhanced by overexpression of p65 or c-Jun. Furthermore, we identified a potential interaction between p65 and c-Jun following NMB stimulation. In addition, a significant positive correlation was observed between the amount of phosphorylated p65 and the levels of COX-2 and IL-6, and between the amount of phosphorylated c-Jun and COX-2 and IL-6 levels. These data suggested that NMB-induced COX-2 and IL-6 expression were mediated via p65 and c-Jun activation.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/biossíntese , Miométrio/metabolismo , Neurocinina B/análogos & derivados , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Neurocinina B/farmacologia , Gravidez , Proto-Oncogene Mas
7.
J Neuroendocrinol ; 30(12): e12660, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30422333

RESUMO

A population of kisspeptin neurones located in the hypothalamic arcuate nucleus (ARN) very likely represent the gonadotrophin-releasing hormone pulse generator responsible for driving pulsatile luteinising hormone secretion in mammals. As such, it has become important to understand the neural inputs that modulate the activity of ARN kisspeptin (ARNKISS ) neurones. Using a transgenic GCaMP6 mouse model allowing the intracellular calcium levels ([Ca2+ ]i ) of individual ARNKISS neurones to be assessed simultaneously, we examined whether the circadian neuropeptides vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) modulated the activity of ARNKISS neurones directly. To validate this methodology, we initially evaluated the effects of neurokinin B (NKB) on [Ca2+ ]i in kisspeptin neurones residing within the rostral, middle and caudal ARN subregions of adult male and female mice. All experiments were undertaken in the presence of tetrodotoxin and ionotropic amino acid antagonists. NKB was found to evoke an abrupt increase in [Ca2+ ]i in 95%-100% of kisspeptin neurones throughout the ARN of both sexes. By contrast, both VIP and AVP were found to primarily activate kisspeptin neurones located in the caudal ARN of female mice. Although 58% and 59% of caudal ARN kisspeptin neurones responded to AVP and VIP, respectively, in female mice, only 0%-8% of kisspeptin neurones located in other ARN subregions responded in females and 0%-12% of cells in any subregion in males (P < 0.05). These observations demonstrate unexpected sex differences and marked heterogeneity in functional neuropeptide receptor expression amongst ARNKISS neurones organised on a rostro-caudal basis. The functional significance of this unexpected influence of VIP and AVP on ARNKISS neurones remains to be established.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Kisspeptinas/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Peptídeo Intestinal Vasoativo/fisiologia , Vasopressinas/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurocinina B/farmacologia , Neurônios/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Vasopressinas/farmacologia
8.
Endocrinology ; 159(9): 3187-3199, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016419

RESUMO

A subpopulation of neurons located within the arcuate nucleus, colocalizing kisspeptin, neurokinin B, and dynorphin (Dyn; termed KNDy neurons), represents key mediators of pulsatile GnRH secretion. The KNDy model of GnRH pulse generation proposes that Dyn terminates each pulse. However, it is unknown where and when during a pulse that Dyn is released to inhibit GnRH secretion. Dyn acts via the κ opioid receptor (KOR), and KOR is present in KNDy and GnRH neurons in sheep. KOR, similar to other G protein-coupled receptors, are internalized after exposure to ligand, and thus internalization can be used as a marker of endogenous Dyn release. Thus, we hypothesized that KOR will be internalized at pulse termination in both KNDy and GnRH neurons. To test this hypothesis, GnRH pulses were induced in gonad-intact anestrous ewes by injection of neurokinin B (NKB) into the third ventricle and animals were euthanized at times of either pulse onset or termination. NKB injections produced increased internalization of KOR within KNDy neurons during both pulse onset and termination. In contrast, KOR internalization into GnRH neurons was seen only during pulse termination, and only in GnRH neurons within the mediobasal hypothalamus (MBH). Overall, our results indicate that Dyn is released onto KNDy cells at the time of pulse onset, and continues to be released during the duration of the pulse. In contrast, Dyn is released onto MBH GnRH neurons only at pulse termination and thus actions of Dyn upon KNDy and GnRH cell bodies may be critical for pulse termination.


Assuntos
Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Receptores Opioides kappa/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/efeitos dos fármacos , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Neurônios/efeitos dos fármacos , Receptores Opioides kappa/efeitos dos fármacos , Ovinos
9.
J Mol Endocrinol ; 61(1): 13-23, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29632025

RESUMO

Neuromedin B (NMB), a mammalian bombesin-related peptide, has numerous physiological functions, including regulating hormone secretions, cell growth, and reproduction, by binding to its receptor (NMBR). In this study, we investigated the effects of NMB on testosterone secretion, steroidogenesis, cell proliferation, and apoptosis in cultured primary porcine Leydig cells. NMBR was mainly expressed in the Leydig cells of porcine testes, and a specific dose of NMB significantly promoted the secretion of testosterone in the primary Leydig cells; moreover, NMB increased the expression of mRNA and/or proteins of NMBR and steroidogenic mediators (steroidogenic acute regulatory (STAR), CYP11A1, and HSD3B1) in the Leydig cells. In addition, specific doses of NMB promoted the proliferation of Leydig cells and increased the expression of proliferating cell nuclear antigen and Cyclin B1 proteins, while suppressing Leydig cell apoptosis and decreasing BAX and Caspase-3 protein expression. These results suggest that the NMB/NMBR system might play an important role in regulating boar reproductive function by modulating steroidogenesis and/or cell growth in porcine Leydig cells.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Neurocinina B/análogos & derivados , Animais , Caspase 3/metabolismo , Células Cultivadas , Ciclina B1/metabolismo , Masculino , Neurocinina B/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Receptores da Bombesina/metabolismo , Suínos , Testosterona/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
J Clin Endocrinol Metab ; 103(1): 95-104, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040622

RESUMO

Context: Neurokinin B (NKB) is obligate for human puberty, but its role in adult female gonadotropin secretion and ovarian follicle growth is unknown. Objective: To investigate antagonism of NKB on pulsatile gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion and ovarian follicle development in healthy women. Design: Open investigation of the effects of a neurokinin-3 receptor (NK3R) antagonist (NK3Ra) vs a no-treatment control cycle. Setting: Clinical research facility. Patients or other participants: Healthy women with regular menses (n = 13). Intervention(s): NK3Ra MLE4901 40 mg taken orally twice daily from cycle day 5 to 6 for 7 days. Main outcome measure(s): LH secretion, ovarian follicle growth, and timing of ovulation. Results: NK3Ra administration reduced basal LH secretion without a change in pulse frequency and delayed the LH surge by 7 days, the duration of treatment [mean cycle day ± standard error of the mean (SEM), 22 ± 1 days vs 15 ± 1 days in control cycles; P = 0.0006]. Follicle growth (mean diameter at the end of administration of NK3Ra administration ± SEM, 9.3 ± 0.4 mm vs 15.1 ± 0.9 mm in control cycles; P < 0.0001) and rising estradiol concentrations (mean ± SEM, 166 ± 29 pmol/L vs 446 ± 86 pmol/L in control cycles; P < 0.0001) were prevented. After treatment, follicle development resumed and normal preovulatory follicle diameter and estradiol concentrations were demonstrated. Postovulatory progesterone rise was similarly delayed (peak cycle day, 30 ± 2 vs 22 ± 1; P = 0.002) and cycle length was prolonged (35 ± 1 days vs 29 ± 1 days in control cycles; P = 0.0003) but luteal progesterone excretion was unaffected by the NK3Ra (LH surge day +7 mean urinary progesterone levels ± SEM, 58 ± 10 pmol/mol vs 48±7 pmol/mol creatinine in control cycles; nonsignificant). Conclusion: These data demonstrate the involvement of NKB-NK3R signaling in the physiological regulation of GnRH/LH secretion, determining normal follicle development in women.


Assuntos
Gonadotropinas/metabolismo , Neurocinina B/farmacologia , Neurotransmissores/farmacologia , Folículo Ovariano/citologia , Ovulação/efeitos dos fármacos , Receptores da Neurocinina-3/antagonistas & inibidores , Adulto , Feminino , Seguimentos , Humanos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Prognóstico , Maturidade Sexual/efeitos dos fármacos
11.
Oncotarget ; 8(25): 40713-40723, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28489574

RESUMO

Angiogenesis is essential for tumor growth and metastasis, controlling angiogenesis is a promising strategy in cancer treatment. However, thus farther severe side effects of anti-angiogenic drugs have been rather demonstrated, stimulating interest in seeking novel targets of anti-angiogenesis. Neurokinin receptors, also known as tachykinin receptors, are usually considered as drug targets due to diverse physiological functions and their tractability. Although Neurokinin B, the selective natural agonist of neurokinin-3 receptor, have been shown to exhibit anti-angiogenesis activity, the effect and mechanism of neurokinin-3 receptor-mediated angiogenesis still remains unclear. In the present study, we demonstrated that [Mephe7]NKB, an analogue of NKB, possess significant anti-angiogenic effect on CAM. Furthermore, by introducing the tumor angiogenesis homing sequence (NGR), we designed and synthesized two novel agonist analogues of NK3R, NK3R-A1 and NK3R-A2. Both of the two analogues exhibit more efficient anti-migration effect on HUVECs by activating NK3R in vitro, and showed potent antitumor activities with no significant side effects in vivo. Taken together, our results illuminated that NK3R might be a potential novel target for the anti-angiogenesis therapy. Notably, NK3R-A1 might be used as a template for the development of the anti-tumor drugs on the basis of the anti-angiogenesis strategy.


Assuntos
Inibidores da Angiogênese/farmacologia , Neurocinina B/farmacologia , Receptores da Neurocinina-3/agonistas , Sarcoma Experimental/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Neurocinina B/análogos & derivados , Receptores da Neurocinina-3/metabolismo , Sarcoma Experimental/irrigação sanguínea , Sarcoma Experimental/metabolismo , Carga Tumoral/efeitos dos fármacos
12.
Exp Neurol ; 287(Pt 1): 75-83, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27539743

RESUMO

Neuronal gastrin-releasing peptide (GRP) has been proved to be an important neuromodulator in the brain and involved in a variety of neurological diseases. Whether GRP could attenuate cognition impairment induced by vascular dementia (VD) in rats, and the mechanism of synaptic plasticity and GRP's action on synaptic efficiency are still poorly understood. In this study, we first investigated the effects of GRP on glutamatergic transmission with patch-clamp recording. We found that acute application of GRP enhanced the excitatory synaptic transmission in hippocampal CA1 neurons via GRPR in a presynaptic mechanism. Secondly, we examined whether exogenous GRP or its analogue neuromedin B (NMB) could prevent VD-induced cognitive deficits and the mechanism of synaptic plasticity. By using Morris water maze, long-term potentiation (LTP) recording, western blot assay and immunofluorescent staining, we verified for the first time that GRP or NMB substantially improved the spatial learning and memory abilities in VD rats, restored the impaired synaptic plasticity and was able to elevate the expression of synaptic proteins, synaptophysin (SYP) and CaMKII, which play pivotal roles in synaptic plasticity. These results suggest that the facilitatory effects of GRP on glutamate release may contribute to its long-term action on synaptic efficacy which is essential in cognitive function. Our findings present a new entry point for a better understanding of physiological function of GRP and raise the possibility that GRPR agonists might ameliorate cognitive deficits associated with neurological diseases.


Assuntos
Transtornos Cognitivos , Demência Vascular/complicações , Peptídeo Liberador de Gastrina/uso terapêutico , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Transmissão Sináptica/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/uso terapêutico , Animais , Animais Recém-Nascidos , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/prevenção & controle , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Peptídeo Liberador de Gastrina/farmacologia , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurocinina B/análogos & derivados , Neurocinina B/farmacologia , Neurocinina B/uso terapêutico , Ratos , Ratos Wistar , Fatores de Tempo
13.
Horm Metab Res ; 48(12): 854-861, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27756093

RESUMO

Neuromedin B (NB) and gastrin-releasing peptide (GRP) are bombesin-like peptides, found in the gastrointestinal tube and pancreas, among other tissues. Consistent data proposed that GRP stimulates insulin secretion, acting directly in pancreatic cells or in the release of gastrointestinal hormones that are incretins. However, the role of NB remains unclear. We examined the glucose homeostasis in mice with deletion of NB receptor (NBR-KO). Female NBR-KO exhibited similar fasting basal glucose with lower insulinemia (48.4%) and lower homeostasis model assessment of insulin resistance index (50.5%) than wild type (WT). Additionally, they were more tolerant to oral glucose, demonstrated by a decrease in the area under the glucose curve (18%). In addition, 15 min after an oral glucose load, female and male NBR-KO showed lower insulin serum levels (45.6 and 26.8%, respectively) than WT, even though blood glucose rose to similar levels in both groups. Single injection of NB, one hour before the oral glucose administration, tended to induce higher serum insulin in WT (28.9%, p=0.3), however the same did not occur in NBR-KO. They showed no changes in fasting insulin content in pancreatic islets by immunohistochemistry, however, the fasting serum levels of glucagon-like peptide, a potent incretin, exhibited a strong trend to reduction (40%, p=0.07). Collectively, mice with deletion of NB receptor have lower insulinemia, especially in response to oral glucose, and females also exhibited a better glucose tolerance, suggesting the involvement of NB and its receptor in regulation of insulin secretion induced by incretins, and also, in insulin sensitivity.


Assuntos
Deleção de Genes , Glucose/administração & dosagem , Glucose/farmacologia , Insulina/metabolismo , Receptores da Bombesina/metabolismo , Administração Oral , Animais , Jejum , Feminino , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Homeostase/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurocinina B/administração & dosagem , Neurocinina B/análogos & derivados , Neurocinina B/farmacologia , Receptores da Bombesina/deficiência
14.
Nature ; 530(7590): 293-297, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26855425

RESUMO

Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.


Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Neurocinina B/análogos & derivados , Neurônios/fisiologia , Receptores da Bombesina/metabolismo , Respiração , Transdução de Sinais/fisiologia , Animais , Bombesina/farmacologia , Emoções/fisiologia , Feminino , Peptídeo Liberador de Gastrina/deficiência , Peptídeo Liberador de Gastrina/genética , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurocinina B/deficiência , Neurocinina B/genética , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Respiração/efeitos dos fármacos , Centro Respiratório/citologia , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/fisiologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Transdução de Sinais/efeitos dos fármacos
15.
J Anim Sci ; 94(1): 58-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26812312

RESUMO

The present study characterizes the receptor that mediates the insulinotropic action of bombesin-like peptides (BLP) in ruminants. Eight Holstein steers were randomly and intravenously injected with synthetic bovine gastrin-releasing peptide (GRP; 0.9 nmol/kg BW), neuromedin B (NMB; 0.9 nmol/kg BW), or neuromedin C (NMC; 0.9 nmol/kg BW), each alone or combined with the antagonist of GRP receptors N-acetyl-GRP-OCHCH (N-GRP-EE; 22.5 nmol/kg BW) or the antagonist of GH secretagogue receptor type 1a (GHS-R1a) [D-Lys]-GHRP-6 (21.5 nmol/kg BW). Blood samples were collected at -10, 0 (just before injection), 5, 10, 15, 20, 30, 45, 60, 75, and 90 min relative to injection time. Levels of injected peptides, insulin, and glucose in plasma were analyzed. Results showed that the peak of insulin levels was seen at 5 min after injection of NMC or GRP. Plasma glucose was observed in 2 phases; a significant rise followed a remarkable fall after NMC or GRP administration compared with injection of the vehicle ( < 0.05). On a same molar basis, effects of GRP on insulin and glucose were more potent than those of NMC ( < 0.05). The NMC-induced changes of insulin and glucose were completely blocked by N-GRP-EE, but [D-Lys]-GHRP-6 did not block any of these changes. Administration of NMB or N-GRP-EE alone did not change the circulating levels of insulin or glucose during any of the sampling time points ( > 0.05). These results indicated that the insulinotropic action of BLP is mediated by GRP receptors but not through a ghrelin/GHS-R1a pathway and that BLP may be involved in the regulation of glucose homeostasis in ruminants.


Assuntos
Bombesina/farmacologia , Peptídeo Liberador de Gastrina/farmacologia , Insulina/metabolismo , Neurotransmissores/farmacologia , Receptores da Bombesina/antagonistas & inibidores , Animais , Glicemia , Bovinos , Glucose/metabolismo , Masculino , Neurocinina B/análogos & derivados , Neurocinina B/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de Grelina/antagonistas & inibidores
16.
Peptides ; 75: 8-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26524625

RESUMO

Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein coupled receptor which is classified in the bombesin receptor (BnR) family with which it shares high homology. It is present widely in the central nervous system and peripheral tissues and primarily receptor-knockout studies suggest it is involved in metabolic-glucose-insulin homeostasis, feeding and other CNS behaviors, gastrointestinal motility and cancer growth. However, the role of BRS-3 physiologically or in pathologic disorders has been not well defined because the natural ligand is unknown. Until recently, no selective agonists/antagonists were available; however, recently synthetic high-affinity agonists, chiral-diazepines nonpeptide-analogs (3F, 9D, 9F, 9G) with low CNS penetrance, were described, but are not well-categorized pharmacologically or in different labarotory species. The present study characterizes the affinities, potencies, selectivities of the chiral-diazepine BRS-3 agonists in human and rodents (mice,rat). In human BRS-3 receptors, the relative affinities of the chiral-diazepines was 9G>9D>9F>3F; each was selective for BRS-3. For stimulating PLC activity, in h-BRS-3 each of the four chiral diazepine analogs was fully efficacious and their relative potencies were: 9G (EC50: 9 nM)>9D (EC50: 9.4 nM)>9F (EC50: 39 nM)>3F (EC50: 48 nM). None of the four chiral diazepine analogs activated r,m,h-GRPR/NMBR. The nonpeptide agonists showed marked differences from each other and a peptide agonist in receptor-coupling-stiochiometry and in affinities/potencies in different species. These results demonstrate that chiral diazepine analogs (9G, 9D, 9F, 3F) have high/affinity/potency for the BRS-3 receptor in human and rodent cells, but different coupling-relationships and species differences from a peptide agonist.


Assuntos
Azepinas/farmacologia , Receptores da Bombesina/agonistas , Animais , Células 3T3 BALB , Avaliação Pré-Clínica de Medicamentos , Peptídeo Liberador de Gastrina/farmacologia , Humanos , Concentração Inibidora 50 , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Neurocinina B/análogos & derivados , Neurocinina B/farmacologia , Ratos , Sistemas do Segundo Mensageiro , Especificidade da Espécie
17.
Sci Rep ; 5: 15879, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522854

RESUMO

Gastroesophageal reflux disease (GERD) is a disorder that is related to an incompetent lower esophageal sphincter (LES). Previous studies showed that bombesin could increase LES pressure in humans and opossums. The aim of the present study was to characterize the effects of bombesin on porcine LES contraction. We used the selective agonists, neuromedin B (NMB), gastrin-releasing peptide (GRP), and [D-Tyr(6),Apa-4Cl(11),Phe(13),Nle(14)]bombesin-(6-14) (DTACPN-BN), as well as receptor antagonists of bombesin receptor subtype 2 (BB2), and 3 (BB3) for ex vivo contraction studies. Atropine, nifedipine, tetrodotoxin, and ω-conotoxin GVIA were used to explore the agonist-induced LES contraction mechanism. Reverse transcription polymerase chain reaction and immunohistochemistry were applied to detect bombesin receptor expression. Our results indicate that GRP and DTACPN-BN, but not NMB, induced tonic contractions of the porcine LES in a dose-dependent manner, and the contractions were inhibited with selective BB2 and BB3 antagonists. The GRP-induced contraction is mainly caused by L-type Ca(2+) channel-mediated Ca(2+) influx. However, DTACPN-BN-induced contractions are associated with neuronal conduction. RT-PCR and immunohistochemistry revealed that BB2 and BB3 were expressed in the porcine LES. Bombesin-induced tonic contraction of the LES is mediated through BB2 and BB3. Bombesin, BB2, and BB3 agonists might have the potential to treat GERD.


Assuntos
Bombesina/farmacologia , Esfíncter Esofágico Inferior/efeitos dos fármacos , Esfíncter Esofágico Inferior/metabolismo , Contração Muscular/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Peptídeo Liberador de Gastrina/farmacologia , Neurocinina B/análogos & derivados , Neurocinina B/farmacologia , Receptores da Bombesina/metabolismo , Suínos
18.
Neuropeptides ; 53: 79-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26145509

RESUMO

The present study focused on the interactive effects of (Mpa(6))-γ2-MSH-6-12 (Mpa, spinal level) and endokinin A/B (EKA/B, supraspinal level) on pain regulation in mice. EKA/B (30 pmol) only weakened 100 pmol Mpa-induced hyperalgesia at 5 min, but could enhance it during 20-30 min. However, EKA/B (100 pmol) antagonized all dose levels of Mpa significantly at 5 min and blocked them completely at 10 min. EKA/B (3 nmol) co-injected with Mpa presented marked analgesia at 5 min and enduring hyperalgesia within 20-60 min. To investigate the underlying mechanisms between Mpa and EKA/B, SR140333B and SR142801 (NK1 and NK3 receptor antagonists, respectively) were utilized. SR140333B had no influence on Mpa, while SR142801 potentiated it during 20-30 min. Whereas, SR140333B and SR142801 could block the co-administration of Mpa and EKA/B (30 pmol) separately at 5 min and 30 min. These phenomena might attribute to that these two antagonists promoted the antagonism of EKA/B (30 pmol) at the early stage, while antagonized EKA/B preferentially in the latter period. SR140333B weakened the analgesia of EKA/B (3 nmol), but produced no effect on Mpa. However, SR140333B failed to affect the co-injection of Mpa and EKA/B, which implied that EKA/B cooperated with Mpa prior to SR140333B. These results could potentially help to better understand the interaction of NK and MrgC receptors in pain regulation in mice.


Assuntos
Hiperalgesia/tratamento farmacológico , Neurocinina A/farmacologia , Neurocinina B/farmacologia , Dor/fisiopatologia , gama-MSH/antagonistas & inibidores , gama-MSH/farmacologia , Animais , Relação Dose-Resposta a Droga , Hiperalgesia/induzido quimicamente , Injeções Intraventriculares , Injeções Espinhais , Masculino , Camundongos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Medição da Dor/efeitos dos fármacos , Piperidinas/farmacologia , Receptores da Neurocinina-3/antagonistas & inibidores , Tropanos/farmacologia
19.
PLoS One ; 10(7): e0133874, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207818

RESUMO

Erectile dysfunction (ED) is a major health problem worldwide and affects approximately 75% of diabetic patients, likely due to severely damaged cavernous body. While screening for cytokines produced by adipose tissue-derived stem cells, we detected neuromedin B (NMB). To explore a potential treatment option for ED, we examined whether NMB was capable of restoring erectile function. We also examined the potential mechanism by which NMB could restore erectile function. Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. An adenovirus expressing NMB (AdNMB) was injected into the penis 6 weeks after STZ administration. Four weeks after the injection of AdNMB, erectile function, penile histology, and protein expression were analyzed. As assessed by the measurement of intracavernous pressure, AdNMB injection significantly restored erectile function compared with the injection of an adenovirus expressing green fluorescent protein. This restoration was associated with conservation of the cavernous body structure and neural nitric oxide synthase (nNOS)-expressing nerves, together with recovery of α-smooth muscle actin, vascular endothelial-cadherin, and nNOS expression. Furthermore, NMB significantly stimulated the survival of SH-SY5Y cells derived from human neuroblastoma tissue with characteristics similar to neurons. Collectively, these results suggested that NMB restored erectile function via protection of the cavernous body from injury and stimulation of the survival of the associated nerves. NMB may be useful to treat ED patients with a severely damaged cavernous body.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/tratamento farmacológico , Disfunção Erétil/tratamento farmacológico , Neurocinina B/análogos & derivados , Neurônios Nitrérgicos/efeitos dos fármacos , Ereção Peniana/efeitos dos fármacos , Animais , Neuropatias Diabéticas/fisiopatologia , Disfunção Erétil/fisiopatologia , Masculino , Neurocinina B/genética , Neurocinina B/farmacologia , Neurocinina B/uso terapêutico , Ereção Peniana/fisiologia , Pênis/efeitos dos fármacos , Pênis/fisiopatologia , Ratos , Ratos Wistar
20.
Endocrinology ; 155(10): 3909-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25057795

RESUMO

Mutations in neurokinin B (NKB) and its receptor, NK3R, were identified in human patients with hypogonadotropic hypogonadism, a disorder characterized by lack of puberty and infertility. Further studies have suggested that NKB acts at the level of the hypothalamus to control GnRH neuron activity, either directly or indirectly. We recently reported that treatment with senktide, a NK3R agonist, induced GnRH secretion and expression of c-fos mRNA in GT1-7 cells. Here, we map the responsive region in the murine c-fos promoter to between -400 and -200 bp, identify the signal transducer and activator of transcription (STAT) (-345) and serum response element (-310) sites as required for induction, a modulatory role for the Ets site (-318), and show that induction is protein kinase C dependent. Using gel shift and Gal4 assays, we further show that phosphorylation of Elk-1 leads to binding to DNA in complex with serum response factor at serum response element and Ets sites within the c-fos promoter. Thus, we determine molecular mechanisms involved in NKB regulation of c-fos induction, which may play a role in modulation of GnRH neuron activation.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/fisiologia , Neurônios/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Fator de Resposta Sérica/metabolismo , Transcrição Gênica/fisiologia , Proteínas Elk-1 do Domínio ets/fisiologia , Animais , Linhagem Celular Transformada , Camundongos , Neurocinina B/farmacologia , Neurônios/metabolismo , Ratos , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...